{ "id": "0903.1743", "version": "v4", "published": "2009-03-10T12:00:36.000Z", "updated": "2009-03-23T21:37:37.000Z", "title": "A recursion for divisor function over divisors belonging to a prescribed finite sequence of positive integers and a solution of the Lahiri problem for divisor function $σ_x(n)$", "authors": [ "Vladimir Shevelev" ], "comment": "11 pages, improvement of the text of Introduction; addition of Section 5", "categories": [ "math.NT" ], "abstract": "For a finite sequence of positive integers $A=\\{a_j\\}_{j=1}^{k},$ we prove a recursion for divisor function $\\sigma_{x}^{(A)}(n)=\\sum_{d|n,\\enskip d\\in A}d^x.$ As a corollary, we give an affirmative solution of the problem posed in 1969 by D. B. Lahiri [3]: to find an identity for divisor function $\\sigma_x(n)$ similar to the classic pentagonal recursion in case of $x=1.$", "revisions": [ { "version": "v4", "updated": "2009-03-23T21:37:37.000Z" } ], "analyses": { "subjects": [ "11B37" ], "keywords": [ "divisor function", "prescribed finite sequence", "positive integers", "lahiri problem", "divisors belonging" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.1743S" } } }