{ "id": "0903.1461", "version": "v2", "published": "2009-03-08T21:51:14.000Z", "updated": "2009-05-09T16:20:35.000Z", "title": "The Navier-Stokes equations in the critical Lebesgue space", "authors": [ "Hongjie Dong", "Dapeng Du" ], "comment": "20 pages, to appear in Comm. Math. Phys", "categories": [ "math.AP" ], "abstract": "We study regularity criteria for the $d$-dimensional incompressible Navier-Stokes equations. We prove in this paper that if $u\\in L_\\infty^tL_{d}^x((0,T)\\times {\\mathbb R}^d)$ is a Leray-Hopf weak solution, then $u$ is smooth and unique in $(0,T)\\times \\bR^d$. This generalizes a result by Escauriaza, Seregin and \\v{S}ver\\'ak. Additionally, we show that if $T=\\infty$ then $u$ goes to zero as $t$ goes to infinity.", "revisions": [ { "version": "v2", "updated": "2009-05-09T16:20:35.000Z" } ], "analyses": { "subjects": [ "35Q30", "76D03", "76D05" ], "keywords": [ "critical lebesgue space", "dimensional incompressible navier-stokes equations", "leray-hopf weak solution", "study regularity criteria" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s00220-009-0852-y", "journal": "Communications in Mathematical Physics", "year": 2009, "month": "Dec", "volume": 292, "number": 3, "pages": 811 }, "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009CMaPh.292..811D" } } }