{ "id": "0903.1418", "version": "v2", "published": "2009-03-08T12:49:58.000Z", "updated": "2009-12-08T09:49:53.000Z", "title": "Dual pairs and contragredients of irreducible representations", "authors": [ "Binyong Sun" ], "journal": "Pacific. J. Math., 249 (2011), 485--494", "categories": [ "math.RT" ], "abstract": "Let $G$ be a classical group $\\GL(n)$, $\\oU(n)$, $\\oO(n)$ or $\\Sp(2n)$, over a non-archimedean local field of characteristic zero. Let $\\pi$ be an irreducible admissible smooth representation of $G$. It is well known that the contragredient of $\\pi$ is isomorphic to a twist of $\\pi$ by an automorphism of $G$. We prove a similar result for double covers of $G$ which occur in the study of local theta correspondences.", "revisions": [ { "version": "v2", "updated": "2009-12-08T09:49:53.000Z" } ], "analyses": { "subjects": [ "22E35", "22E46" ], "keywords": [ "dual pairs", "irreducible representations", "contragredient", "local theta correspondences", "non-archimedean local field" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.1418S" } } }