{ "id": "0903.0984", "version": "v1", "published": "2009-03-05T13:23:16.000Z", "updated": "2009-03-05T13:23:16.000Z", "title": "$Γ$-convergence of some super quadratic functionals with singular weights", "authors": [ "Giampiero Palatucci", "Yannick Sire" ], "categories": [ "math.AP" ], "abstract": "We study the $\\Gamma$-convergence of the following functional ($p>2$) $$ F_{\\epsilon}(u):=\\epsilon^{p-2}\\int_{\\Omega}|Du|^p d(x,\\partial \\Omega)^{a}dx+\\frac{1}{\\epsilon^{\\frac{p-2}{p-1}}}\\int_{\\Omega}W(u) d(x,\\partial \\Omega)^{-\\frac{a}{p-1}}dx+\\frac{1}{\\sqrt{\\epsilon}}\\int_{\\partial\\Omega}V(Tu)d\\mathcal{H}^2, $$ where $\\Omega$ is an open bounded set of $\\mathbb{R}^3$ and $W$ and $V$ are two non-negative continuous functions vanishing at $\\alpha, \\beta$ and $\\alpha', \\beta'$, respectively. In the previous functional, we fix $a=2-p$ and $u$ is a scalar density function, $Tu$ denotes its trace on $\\partial\\Omega$, $d(x,\\partial \\Omega)$ stands for the distance function to the boundary $\\partial\\Om$. We show that the singular limit of the energies $F_{\\epsilon}$ leads to a coupled problem of bulk and surface phase transitions.", "revisions": [ { "version": "v1", "updated": "2009-03-05T13:23:16.000Z" } ], "analyses": { "subjects": [ "82B26", "49J45", "49Q20" ], "keywords": [ "super quadratic functionals", "singular weights", "convergence", "scalar density function", "surface phase transitions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.0984P" } } }