{ "id": "0903.0398", "version": "v1", "published": "2009-03-02T22:19:26.000Z", "updated": "2009-03-02T22:19:26.000Z", "title": "On the Dynkin index of a principal $\\mathfrak{sl}_2$-subalgebra", "authors": [ "Dmitri I. Panyushev" ], "comment": "6 pages, to appear in \"Advances in Math\"", "categories": [ "math.RT" ], "abstract": "Let $g$ be a simple Lie algebra over an algebraically closed field of characteristic zero. The goal of this note is to prove a closed formula for the Dynkin index of a principal $sl_2$-subalgebra of $g$. The key step in the proof uses the \"strange formula\" of Freudenthal--de Vries. As an application, we (1) compute the Dynkin index any simple $g$-module regarded as $sl_2$-module and (2) obtain an identity connecting the exponents of $g$ and the dual Coxeter numbers of both $g$ and the Langlands dual $g^\\vee$.", "revisions": [ { "version": "v1", "updated": "2009-03-02T22:19:26.000Z" } ], "analyses": { "subjects": [ "17B20" ], "keywords": [ "dynkin index", "subalgebra", "simple lie algebra", "dual coxeter numbers", "langlands dual" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.0398P" } } }