{ "id": "0903.0354", "version": "v2", "published": "2009-03-02T18:54:27.000Z", "updated": "2013-04-01T16:18:00.000Z", "title": "Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity", "authors": [ "Mihai Mariş" ], "comment": "60 pages. Final version, to appear in the Annals of Mathematics", "categories": [ "math.AP" ], "abstract": "For a large class of nonlinear Schr\\\"odinger equations with nonzero conditions at infinity and for any speed $c$ less than the sound velocity, we prove the existence of nontrivial finite energy traveling waves moving with speed $c$ in any space dimension $N\\geq 3$. Our results are valid as well for the Gross-Pitaevskii equation and for NLS with cubic-quintic nonlinearity.", "revisions": [ { "version": "v2", "updated": "2013-04-01T16:18:00.000Z" } ], "analyses": { "subjects": [ "35Q51", "35Q55", "35Q40", "35J20", "35J15", "35B65", "37K40" ], "keywords": [ "nonlinear schrödinger equations", "nonzero conditions", "energy traveling waves moving", "nontrivial finite energy traveling waves", "cubic-quintic nonlinearity" ], "note": { "typesetting": "TeX", "pages": 60, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.0354M" } } }