{ "id": "0903.0169", "version": "v1", "published": "2009-03-01T19:46:38.000Z", "updated": "2009-03-01T19:46:38.000Z", "title": "Finiteness of the number of ends of minimal submanifolds in euclidean space", "authors": [ "Vladimir G. Tkachev" ], "comment": "18 pages", "journal": "Manuscr. Math., 82(1994), no 1, 313-330", "doi": "10.1007/BF02567704", "categories": [ "math.DG", "math.GT" ], "abstract": "We prove a version of the well-known Denjoy-Ahlfors theorem about the number of asymptotic values of an entire function for properly immersed minimal surfaces of arbitrary codimension in R^N. The finiteness of the number of ends is proved for minimal submanifolds with finite projective volume. We show, as a corollary, that a minimal surface of codimensionn meeting any n-plane passing through the origin in at most k points has no more c(n,N)k ends.", "revisions": [ { "version": "v1", "updated": "2009-03-01T19:46:38.000Z" } ], "analyses": { "subjects": [ "53A10", "49Q05", "53C65" ], "keywords": [ "minimal submanifolds", "euclidean space", "finiteness", "well-known denjoy-ahlfors theorem", "finite projective volume" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer", "journal": "Commun. Math. Phys." }, "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.0169T" } } }