{ "id": "0903.0106", "version": "v4", "published": "2009-03-02T14:27:24.000Z", "updated": "2010-06-30T19:33:05.000Z", "title": "The groups of points on abelian varieties over finite fields", "authors": [ "Sergey Rybakov" ], "comment": "6 pages; final version", "journal": "Central European Journal of Mathematics, Volume 8, Number 2, 2010, 282-288", "categories": [ "math.AG", "math.NT" ], "abstract": "Let $A$ be an abelian variety with commutative endomorphism algebra over a finite field $k$. The $k$-isogeny class of $A$ is uniquely determined by a Weil polynomial $f_A$ without multiple roots. We give a classification of the groups of $k$-rational points on varieties from this class in terms of Newton polygons of $f_A(1-t)$.", "revisions": [ { "version": "v4", "updated": "2010-06-30T19:33:05.000Z" } ], "analyses": { "subjects": [ "14G05", "14G15" ], "keywords": [ "abelian variety", "finite field", "rational points", "multiple roots", "isogeny class" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.0106R" } } }