{ "id": "0902.4741", "version": "v1", "published": "2009-02-27T14:46:54.000Z", "updated": "2009-02-27T14:46:54.000Z", "title": "Global solution and long-time behavior for a problem of phase segregation of the Allen-Cahn type", "authors": [ "Pierluigi Colli", "Gianni Gilardi", "Paolo Podio-Guidugli", "Juergen Sprekels" ], "categories": [ "math.AP" ], "abstract": "In this paper we study a model for phase segregation consisting in a sistem of a partial and an ordinary differential equation. By a careful definition of maximal solution to the latter equation, this system reduces to an Allen-Cahn equation with a memory term. Global existence and uniqueness of a smooth solution are proven and a characterization of the omega-limit set is given.", "revisions": [ { "version": "v1", "updated": "2009-02-27T14:46:54.000Z" } ], "analyses": { "subjects": [ "74A15", "35K55", "35A05", "35B40" ], "keywords": [ "long-time behavior", "global solution", "allen-cahn type", "ordinary differential equation", "omega-limit set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0902.4741C" } } }