{ "id": "0902.4389", "version": "v1", "published": "2009-02-25T15:14:31.000Z", "updated": "2009-02-25T15:14:31.000Z", "title": "Dimension reduction in representation of the data", "authors": [ "A. G. Ramm" ], "categories": [ "stat.ML", "math.NA", "math.ST", "stat.TH" ], "abstract": "Suppose the data consist of a set $S$ of points $x_j$, $1\\leq j \\leq J$, distributed in a bounded domain $D\\subset R^N$, where $N$ is a large number. An algorithm is given for finding the sets $L_k$ of dimension $k\\ll N$, $k=1,2,...K$, in a neighborhood of which maximal amount of points $x_j\\in S$ lie. The algorithm is different from PCA (principal component analysis)", "revisions": [ { "version": "v1", "updated": "2009-02-25T15:14:31.000Z" } ], "analyses": { "subjects": [ "62H35" ], "keywords": [ "dimension reduction", "representation", "principal component analysis", "data consist", "large number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0902.4389R" } } }