{ "id": "0902.4332", "version": "v3", "published": "2009-02-25T10:06:25.000Z", "updated": "2011-01-31T09:04:29.000Z", "title": "The distribution of the number of points modulo an integer on elliptic curves over finite fields", "authors": [ "Wouter Castryck", "Hendrik Hubrechts" ], "comment": "21 pages; completely rewritten because of an error in the previous version", "categories": [ "math.NT", "math.AG" ], "abstract": "Let F be a finite field and let b and N be integers. We prove explicit estimates for the probability that the number of rational points on a randomly chosen elliptic curve E over F equals b modulo N. The underlying tool is an equidistribution result on the action of Frobenius on the N-torsion subgroup of E. Our results subsume and extend previous work by Achter and Gekeler.", "revisions": [ { "version": "v3", "updated": "2011-01-31T09:04:29.000Z" } ], "analyses": { "subjects": [ "14H52", "14K10" ], "keywords": [ "finite field", "points modulo", "randomly chosen elliptic curve", "equidistribution result", "rational points" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0902.4332C" } } }