{ "id": "0902.4311", "version": "v2", "published": "2009-02-25T08:16:49.000Z", "updated": "2010-11-02T17:35:32.000Z", "title": "A combinatorial approach to the power of 2 in the number of involutions", "authors": [ "Dongsu Kim", "Jang Soo Kim" ], "comment": "13 pages", "journal": "J. Combin. Theory Ser. A, 117(8), 1082-1094, 2010", "categories": [ "math.CO", "math.NT" ], "abstract": "We provide a combinatorial approach to the largest power of $p$ in the number of permutations $\\pi$ with $\\pi^p=1$, for a fixed prime number $p$. With this approach, we find the largest power of $2$ in the number of involutions, in the signed sum of involutions and in the numbers of even or odd involutions.", "revisions": [ { "version": "v2", "updated": "2010-11-02T17:35:32.000Z" } ], "analyses": { "subjects": [ "05A05", "11B75" ], "keywords": [ "combinatorial approach", "largest power", "odd involutions", "fixed prime number" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0902.4311K" } } }