{ "id": "0902.4302", "version": "v1", "published": "2009-02-25T08:01:02.000Z", "updated": "2009-02-25T08:01:02.000Z", "title": "Hamilton-Jacobi-Bellman equations for the optimal control of a state equation with memory", "authors": [ "Guillaume Carlier", "Rabah Tahraoui" ], "journal": "ESAIM COCV 16, 3 (2010) 744-763", "categories": [ "math.OC" ], "abstract": "This article is devoted to the optimal control of state equations with memory of the form: ?[x(t) = F(x(t),u(t), \\int_0^{+\\infty} A(s) x(t-s) ds), t>0, with initial conditions x(0)=x, x(-s)=z(s), s>0.]Denoting by $y_{x,z,u}$ the solution of the previous Cauchy problem and: \\[v(x,z):=\\inf_{u\\in V} \\{\\int_0^{+\\infty} e^{-\\lambda s} L(y_{x,z,u}(s), u(s))ds \\}\\] where $V$ is a class of admissible controls, we prove that $v$ is the only viscosity solution of an Hamilton-Jacobi-Bellman equation of the form: \\[\\lambda v(x,z)+H(x,z,\\nabla_x v(x,z))+D_z v(x,z), \\dot{z} >=0\\] in the sense of the theory of viscosity solutions in infinite-dimensions of M. Crandall and P.-L. Lions.", "revisions": [ { "version": "v1", "updated": "2009-02-25T08:01:02.000Z" } ], "analyses": { "keywords": [ "hamilton-jacobi-bellman equation", "state equation", "optimal control", "viscosity solution", "initial conditions" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0902.4302C" } } }