{ "id": "0902.3839", "version": "v2", "published": "2009-02-23T02:40:00.000Z", "updated": "2014-03-17T23:47:17.000Z", "title": "Gauss-Bonnet-Chern theorem on moduli space", "authors": [ "Zhiqin Lu", "Michael R. Douglas" ], "comment": "Final version, Journal ref added", "journal": "Math. Ann., 357, 2013, 469-511", "doi": "10.1007/s00208-013-0907-4", "categories": [ "math.DG", "hep-th", "math.AG" ], "abstract": "In this paper, we proved the Gauss-Bonnet-Chern theorem on moduli space of polarized Kahler manifolds. Using our results, we proved the rationality of the Chern-Weil forms (with respect to the Weil-Petersson metric) on CY moduli. As an application in physics, by the Ashok-Douglas theory, counting the number of flux compactifications of the type IIb string on a Calabi-Yau threefold is related to the integrations of various Chern-Weil forms. We proved that all these integrals are finite (and also rational).", "revisions": [ { "version": "v2", "updated": "2014-03-17T23:47:17.000Z" } ], "analyses": { "keywords": [ "moduli space", "gauss-bonnet-chern theorem", "chern-weil forms", "weil-petersson metric", "polarized kahler manifolds" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 815940, "adsabs": "2009arXiv0902.3839L" } } }