{ "id": "0902.3744", "version": "v1", "published": "2009-02-21T19:33:18.000Z", "updated": "2009-02-21T19:33:18.000Z", "title": "Pseudo-Boson Coherent and Fock States", "authors": [ "D. A. Trifonov" ], "comment": "10 pages, no figures. Based on talk given at 9th IC on Complex Structures, Integrability and Vector Fields, Sofia, August 2008", "journal": "in Differential Geometry, Complex Analysis and Mathematical Physics, eds. K. Sekigawa et al (W. Scientific 2009), pp. 241-250", "categories": [ "quant-ph" ], "abstract": "Coherent states (CS) for non-Hermitian systems are introduced as eigenstates of pseudo-Hermitian boson annihilation operators. The set of these CS includes two subsets which form bi-normalized and bi-overcomplete system of states. The subsets consist of eigenstates of two complementary lowering pseudo-Hermitian boson operators. Explicit constructions are provided on the example of one-parameter family of pseudo-boson ladder operators. The wave functions of the eigenstates of the two complementary number operators, which form a bi-orthonormal system of Fock states, are found to be proportional to new polynomials, that are bi-orthogonal and can be regarded as a generalization of standard Hermite polynomials.", "revisions": [ { "version": "v1", "updated": "2009-02-21T19:33:18.000Z" } ], "analyses": { "keywords": [ "fock states", "pseudo-boson coherent", "complementary lowering pseudo-hermitian boson operators", "pseudo-hermitian boson annihilation operators", "standard hermite polynomials" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1185506, "adsabs": "2009arXiv0902.3744T" } } }