{ "id": "0902.3453", "version": "v1", "published": "2009-02-19T20:50:53.000Z", "updated": "2009-02-19T20:50:53.000Z", "title": "Escaping the curse of dimensionality with a tree-based regressor", "authors": [ "Samory Kpotufe" ], "categories": [ "stat.ML" ], "abstract": "We present the first tree-based regressor whose convergence rate depends only on the intrinsic dimension of the data, namely its Assouad dimension. The regressor uses the RPtree partitioning procedure, a simple randomized variant of k-d trees.", "revisions": [ { "version": "v1", "updated": "2009-02-19T20:50:53.000Z" } ], "analyses": { "keywords": [ "dimensionality", "convergence rate depends", "intrinsic dimension", "first tree-based regressor", "simple randomized variant" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0902.3453K" } } }