{ "id": "0902.3216", "version": "v1", "published": "2009-02-18T18:42:32.000Z", "updated": "2009-02-18T18:42:32.000Z", "title": "A Free boundary problem for the $p(x)$- Laplacian", "authors": [ "Julián Fernández Bonder", "Sandra Martínez", "Noemi Wolanski" ], "comment": "35 pages, submitted", "categories": [ "math.AP" ], "abstract": "We consider the optimization problem of minimizing $\\int_{\\Omega}|\\nabla u|^{p(x)}+ \\lambda \\chi_{\\{u>0\\}} dx$ in the class of functions $W^{1,p(\\cdot)}(\\Omega)$ with $u-\\phi_0\\in W_0^{1,p(\\cdot)}(\\Omega)$, for a given $\\phi_0\\geq 0$ and bounded. $W^{1,p(\\cdot)}(\\Omega)$ is the class of weakly differentiable functions with $\\int_\\Omega |\\nabla u|^{p(x)} dx<\\infty$. We prove that every solution $u$ is locally Lipschitz continuous, that it is a solution to a free boundary problem and that the free boundary, $\\Omega\\cap\\partial\\{u>0\\}$, is a regular surface.", "revisions": [ { "version": "v1", "updated": "2009-02-18T18:42:32.000Z" } ], "analyses": { "subjects": [ "35R35", "35B65" ], "keywords": [ "free boundary problem", "regular surface", "optimization problem", "weakly differentiable functions" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0902.3216F" } } }