{ "id": "0902.2686", "version": "v1", "published": "2009-02-16T14:00:34.000Z", "updated": "2009-02-16T14:00:34.000Z", "title": "Karpińska's paradox in dimension three", "authors": [ "Walter Bergweiler" ], "comment": "21 pages", "journal": "Duke Math. J. 154 (2010), 599-630", "categories": [ "math.DS", "math.CV" ], "abstract": "For 0 < c < 1/e the Julia set of f(z) = c exp(z) is an uncountable union of pairwise disjoint simple curves tending to infinity [Devaney and Krych 1984], the Hausdorff dimension of this set is two [McMullen 1987], but the set of curves without endpoints has Hausdorff dimension one [Karpinska 1999]. We show that these results have three-dimensional analogues when the exponential function is replaced by a quasiregular self-map of three-space introduced by Zorich.", "revisions": [ { "version": "v1", "updated": "2009-02-16T14:00:34.000Z" } ], "analyses": { "subjects": [ "37F35", "30C65", "30D10", "37F10" ], "keywords": [ "karpińskas paradox", "hausdorff dimension", "pairwise disjoint simple curves tending", "julia set", "three-dimensional analogues" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0902.2686B" } } }