{ "id": "0902.2513", "version": "v3", "published": "2009-02-15T01:52:21.000Z", "updated": "2011-01-25T00:53:44.000Z", "title": "An extension of an inequality for ratios of gamma functions", "authors": [ "Feng Qi", "Bai-Ni Guo" ], "comment": "8 pages", "journal": "Bai-Ni Guo and Feng Qi, An extension of an inequality for ratios of gamma functions, Journal of Approximation Theory 163 (2011), no. 9, 1208--1216", "doi": "10.1016/j.jat.2011.04.003", "categories": [ "math.CA" ], "abstract": "In this paper, we prove that for $x+y>0$ and $y+1>0$ the inequality {equation*} \\frac{[\\Gamma(x+y+1)/\\Gamma(y+1)]^{1/x}}{[\\Gamma(x+y+2)/\\Gamma(y+1)]^{1/(x+1)}} <\\biggl(\\frac{x+y}{x+y+1}\\biggr)^{1/2} {equation*} is valid if $x>1$ and reversed if $x<1$ and that the power $\\frac12$ is the best possible, where $\\Gamma(x)$ is the Euler gamma function. This extends the result in [Y. Yu, \\textit{An inequality for ratios of gamma functions}, J. Math. Anal. Appl. \\textbf{352} (2009), no.~2, 967\\nobreakdash--970.] and resolves an open problem posed in [B.-N. Guo and F. Qi, \\emph{Inequalities and monotonicity for the ratio of gamma functions}, Taiwanese J. Math. \\textbf{7} (2003), no.~2, 239\\nobreakdash--247.].", "revisions": [ { "version": "v3", "updated": "2011-01-25T00:53:44.000Z" } ], "analyses": { "subjects": [ "26D07", "33B15" ], "keywords": [ "inequality", "euler gamma function", "open problem" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0902.2513Q" } } }