{ "id": "0902.2507", "version": "v1", "published": "2009-02-15T00:59:37.000Z", "updated": "2009-02-15T00:59:37.000Z", "title": "Existence of weak solutions for nonlinear elliptic systems involving the (p(x), q(x))-Laplacian", "authors": [ "Mounir Hsini" ], "comment": "15 pages", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "In this paper, we prove the existence of weak solutions for the following nonlinear elliptic system {lll} -\\Delta_{p(x)}u = a(x)|u|^{p(x)-2}u - b(x)|u|^{\\alpha(x)}|v|^{\\beta(x)} v + f(x) in \\Omega, \\Delta_{q(x)}v = c(x) |v|^{q(x)-2}v - d(x)|v|^{\\beta(x)}|u|^{\\alpha(x)} u + g(x) in \\Omega, u = v = 0 \\quad on \\partial\\Omega, where $\\Omega$ is an open bounded domains of $\\mathbb{R}^N$ with a smooth boundary $\\partial\\Omega$ and $\\Delta_{p(x)}$ denotes the $p(x)$-Laplacian.The existence of weak solutions is proved using the theory of monotone operators. Similar result will be proved when $\\Omega=\\mathbb{R}^N$.", "revisions": [ { "version": "v1", "updated": "2009-02-15T00:59:37.000Z" } ], "analyses": { "subjects": [ "35B45", "35J55" ], "keywords": [ "nonlinear elliptic system", "weak solutions", "open bounded domains", "smooth boundary", "monotone operators" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0902.2507H" } } }