{ "id": "0902.1963", "version": "v1", "published": "2009-02-11T19:06:09.000Z", "updated": "2009-02-11T19:06:09.000Z", "title": "On the Lie algebras of surface pure braid groups", "authors": [ "B. Enriquez", "V. V. Vershinin" ], "comment": "5 pages", "categories": [ "math.AT", "math.GR" ], "abstract": "We consider the Lie algebra associated with the descending central series filtration of the pure braid group of a closed surface of arbitrary genus. R. Bezrukavnikov gave a presentation of this Lie algebra over the rational numbers. We show that his presentation remains true for this Lie algebra itself, i.e. over integers.", "revisions": [ { "version": "v1", "updated": "2009-02-11T19:06:09.000Z" } ], "analyses": { "subjects": [ "20F36" ], "keywords": [ "surface pure braid groups", "lie algebra", "descending central series filtration", "presentation remains true", "arbitrary genus" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0902.1963E" } } }