{ "id": "0902.1810", "version": "v1", "published": "2009-02-11T13:51:39.000Z", "updated": "2009-02-11T13:51:39.000Z", "title": "Chopped and sliced cones and representations of Kac-Moody algebras", "authors": [ "Thomas Bliem" ], "comment": "9 pages, 1 figure", "journal": "J. Pure Appl. Algebra 214 (2010), 1152-1164", "doi": "10.1016/j.jpaa.2009.10.002", "categories": [ "math.RT", "math.CO" ], "abstract": "We introduce the notion of a chopped and sliced cone in combinatorial geometry and prove two structure theorems for the number of integral points in the individual slices of such a cone. We observe that this notion applies to weight multiplicities of Kac-Moody algebras and Littlewood-Richardson coefficients of semisimple Lie algebras, where we obtain the corresponding results.", "revisions": [ { "version": "v1", "updated": "2009-02-11T13:51:39.000Z" } ], "analyses": { "keywords": [ "kac-moody algebras", "sliced cone", "representations", "semisimple lie algebras", "integral points" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0902.1810B" } } }