{ "id": "0902.1312", "version": "v2", "published": "2009-02-08T14:17:27.000Z", "updated": "2009-02-17T10:43:35.000Z", "title": "On the minimal norm of a non-regular generalized character of an arbitrary finite group", "authors": [ "Geoffrey R. Robinson" ], "comment": "7 pages", "doi": "10.1112/blms/bdp129", "categories": [ "math.RT", "math.GR" ], "abstract": "We prove that for any finite group G, the sum across non-identity elements of the squared absolute value of any generalized character of G which does not vanish on all non-identity elements of G is at least |G|/d -1, where d is the maximal degree of a complex irreducible character of G, and we identify all cases where this minimum possible value is attained.", "revisions": [ { "version": "v2", "updated": "2009-02-17T10:43:35.000Z" } ], "analyses": { "subjects": [ "20C20" ], "keywords": [ "arbitrary finite group", "non-regular generalized character", "minimal norm", "non-identity elements", "complex irreducible character" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0902.1312R" } } }