{ "id": "0902.0743", "version": "v2", "published": "2009-02-04T16:43:06.000Z", "updated": "2009-02-27T10:07:55.000Z", "title": "Isoperimetry for spherically symmetric log-concave probability measures", "authors": [ "Nolwen Huet" ], "categories": [ "math.PR" ], "abstract": "We prove an isoperimetric inequality for probability measures $\\mu$ on $\\mathbb{R}^n$ with density proportional to $\\exp(-\\phi(\\lambda | x|))$, where $|x|$ is the euclidean norm on $\\mathbb{R}^n$ and $\\phi$ is a non-decreasing convex function. It applies in particular when $\\phi(x)=x^\\alpha$ with $\\alpha\\ge1$. Under mild assumptions on $\\phi$, the inequality is dimension-free if $\\lambda$ is chosen such that the covariance of $\\mu$ is the identity.", "revisions": [ { "version": "v2", "updated": "2009-02-27T10:07:55.000Z" } ], "analyses": { "subjects": [ "26D10", "60E15", "28A75" ], "keywords": [ "spherically symmetric log-concave probability measures", "isoperimetry", "isoperimetric inequality", "density proportional", "euclidean norm" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0902.0743H" } } }