{ "id": "0902.0672", "version": "v2", "published": "2009-02-04T09:04:39.000Z", "updated": "2011-07-25T08:39:08.000Z", "title": "Total curvature of complete surfaces in hyperbolic space", "authors": [ "Gil Solanes" ], "journal": "Advances in Mathematics 225 (2010), no. 2, 805-825", "doi": "10.1016/j.aim.2010.03.015", "categories": [ "math.DG", "math.MG" ], "abstract": "We prove a Gauss-Bonnet formula for the extrinsic curvature of complete surfaces in hyperbolic space under some assumptions on the asymptotic behaviour. The result is given in terms of the measure of geodesics intersecting the surface non-trivially, and of a conformal invariant of the curve at infinity.", "revisions": [ { "version": "v2", "updated": "2011-07-25T08:39:08.000Z" } ], "analyses": { "subjects": [ "53C65" ], "keywords": [ "complete surfaces", "hyperbolic space", "total curvature", "extrinsic curvature", "asymptotic behaviour" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier", "journal": "Adv. Math." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0902.0672S" } } }