{ "id": "0902.0488", "version": "v4", "published": "2009-02-03T12:25:46.000Z", "updated": "2009-12-23T15:19:32.000Z", "title": "Growth rate for beta-expansions", "authors": [ "De-Jun Feng", "Nikita Sidorov" ], "comment": "21 pages, 2 figures", "journal": "Monatsh. Math. 162 (2011), 41-60", "categories": [ "math.NT", "math.DS" ], "abstract": "Let $\\beta>1$ and let $m>\\be$ be an integer. Each $x\\in I_\\be:=[0,\\frac{m-1}{\\beta-1}]$ can be represented in the form \\[ x=\\sum_{k=1}^\\infty \\epsilon_k\\beta^{-k}, \\] where $\\epsilon_k\\in\\{0,1,...,m-1\\}$ for all $k$ (a $\\beta$-expansion of $x$). It is known that a.e. $x\\in I_\\beta$ has a continuum of distinct $\\beta$-expansions. In this paper we prove that if $\\beta$ is a Pisot number, then for a.e. $x$ this continuum has one and the same growth rate. We also link this rate to the Lebesgue-generic local dimension for the Bernoulli convolution parametrized by $\\beta$. When $\\beta<\\frac{1+\\sqrt5}2$, we show that the set of $\\beta$-expansions grows exponentially for every internal $x$.", "revisions": [ { "version": "v4", "updated": "2009-12-23T15:19:32.000Z" } ], "analyses": { "subjects": [ "11A63", "28D05", "42A85" ], "keywords": [ "growth rate", "beta-expansions", "lebesgue-generic local dimension", "pisot number", "expansions grows" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0902.0488F" } } }