{ "id": "0902.0449", "version": "v3", "published": "2009-02-03T08:56:26.000Z", "updated": "2009-07-14T21:02:35.000Z", "title": "Isolated Boundary Singularities of Semilinear Elliptic Equations", "authors": [ "Marie-Françoise Bidaut-Veron", "Augusto C. Ponce", "Laurent Veron" ], "categories": [ "math.AP" ], "abstract": "Given a smooth domain $\\Omega\\subset\\RR^N$ such that $0 \\in \\partial\\Omega$ and given a nonnegative smooth function $\\zeta$ on $\\partial\\Omega$, we study the behavior near 0 of positive solutions of $-\\Delta u=u^q$ in $\\Omega$ such that $u = \\zeta$ on $\\partial\\Omega\\setminus\\{0\\}$. We prove that if $\\frac{N+1}{N-1} < q < \\frac{N+2}{N-2}$, then $u(x)\\leq C \\abs{x}^{-\\frac{2}{q-1}}$ and we compute the limit of $\\abs{x}^{\\frac{2}{q-1}} u(x)$ as $x \\to 0$. We also investigate the case $q= \\frac{N+1}{N-1}$. The proofs rely on the existence and uniqueness of solutions of related equations on spherical domains.", "revisions": [ { "version": "v3", "updated": "2009-07-14T21:02:35.000Z" } ], "analyses": { "subjects": [ "35J60", "34B15" ], "keywords": [ "semilinear elliptic equations", "isolated boundary singularities", "smooth domain", "nonnegative smooth function", "positive solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0902.0449B" } } }