{ "id": "0901.4925", "version": "v1", "published": "2009-01-30T16:35:18.000Z", "updated": "2009-01-30T16:35:18.000Z", "title": "Parameter estimation for fractional Ornstein-Uhlenbeck processes", "authors": [ "Yaozhong Hu", "David Nualart" ], "categories": [ "math.PR", "math.ST", "stat.TH" ], "abstract": "We study a least squares estimator $\\hat {\\theta}_T$ for the Ornstein-Uhlenbeck process, $dX_t=\\theta X_t dt+\\sigma dB^H_t$, driven by fractional Brownian motion $B^H$ with Hurst parameter $H\\ge \\frac12$. We prove the strong consistence of $\\hat {\\theta}_T$ (the almost surely convergence of $\\hat {\\theta}_T$ to the true parameter ${% \\theta}$). We also obtain the rate of this convergence when $1/2\\le H<3/4$, applying a central limit theorem for multiple Wiener integrals. This least squares estimator can be used to study other more simulation friendly estimators such as the estimator $\\tilde \\theta_T$ defined by (4.1).", "revisions": [ { "version": "v1", "updated": "2009-01-30T16:35:18.000Z" } ], "analyses": { "subjects": [ "60Hxx" ], "keywords": [ "fractional ornstein-uhlenbeck processes", "parameter estimation", "squares estimator", "multiple wiener integrals", "central limit theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }