{ "id": "0901.2639", "version": "v3", "published": "2009-01-17T14:31:59.000Z", "updated": "2010-11-16T09:08:38.000Z", "title": "A note on parameter derivatives of classical orthogonal polynomials", "authors": [ "Radoslaw Szmytkowski" ], "comment": "8 pages, LaTeX; one reference added, some references updated", "categories": [ "math.CA", "math-ph", "math.MP" ], "abstract": "Coefficients in the expansions of the form $\\partial P_{n}(\\lambda;z)}/\\partial\\lambda=\\sum_{k=0}^{n}a_{nk}(\\lambda)P_{k}(\\lambda;z)$, where $P_{n}(\\lambda;z)$ is the $n$th classical (the generalized Laguerre, Gegenbauer or Jacobi) orthogonal polynomial of variable $z$ and $\\lambda$ is a parameter, are evaluated. A method we adopt in the present paper differs from that used by Fr\\\"ohlich [Integral Transforms Spec. Funct. 2 (1994) 253] for the Jacobi polynomials and by Koepf [Integral Transforms Spec. Funct. 5 (1997) 69] for the generalized Laguerre and the Gegenbauer polynomials.", "revisions": [ { "version": "v3", "updated": "2010-11-16T09:08:38.000Z" } ], "analyses": { "subjects": [ "42C05", "33C45", "42C10" ], "keywords": [ "classical orthogonal polynomials", "parameter derivatives", "integral transforms spec", "generalized laguerre", "jacobi polynomials" ], "note": { "typesetting": "LaTeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0901.2639S" } } }