{ "id": "0901.2291", "version": "v1", "published": "2009-01-15T15:57:59.000Z", "updated": "2009-01-15T15:57:59.000Z", "title": "Strong subgroup chains and the Baer-Specker group", "authors": [ "Oren Kolman" ], "comment": "12 pages", "journal": "Models, Modules and Abelian Groups, B. Goldsmith; R. G\\\"obel (Ed.) (2008) 189-200", "categories": [ "math.LO", "math.GR" ], "abstract": "Examples are given of non-elementary properties that are preserved under C-filtrations for various classes C of Abelian groups. The Baer-Specker group is never the union of a chain of proper subgroups with cotorsionfree quotients. Cotorsion-free groups form an abstract elementary class (AEC). The Kaplansky invariants of the Baer-Specker group are used to determine the AECs defined by the perps of the Baer-Specker quotient groups that are obtained by factoring the Baer-Specker group B of a ZFC extension by the Baer-Specker group A of the ground model, under various hypotheses, yielding information about its stability spectrum.", "revisions": [ { "version": "v1", "updated": "2009-01-15T15:57:59.000Z" } ], "analyses": { "keywords": [ "baer-specker group", "strong subgroup chains", "cotorsion-free groups form", "abstract elementary class", "baer-specker quotient groups" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }