{ "id": "0901.1482", "version": "v5", "published": "2009-01-11T23:46:17.000Z", "updated": "2014-01-14T14:17:29.000Z", "title": "The Logarithmic Sobolev Inequality for Gibbs measures on infinite product of Heisenberg groups", "authors": [ "Ioannis Papageorgiou" ], "comment": "42 pages", "categories": [ "math.FA", "math.PR" ], "abstract": "We are interested in the $q$ Logarithmic Sobolev inequality for probability measures on the infinite product of Heisenberg groups. We assume that the one site boundary free measure satisfies either a $q$ Log-Sobolev inequality or a U-Bound inequality, and we determine conditions so that the infinite dimensional Gibbs measure satisfies a $q$ Log-Sobolev inequality.", "revisions": [ { "version": "v5", "updated": "2014-01-14T14:17:29.000Z" } ], "analyses": { "subjects": [ "60E15", "26D10" ], "keywords": [ "logarithmic sobolev inequality", "infinite product", "heisenberg groups", "site boundary free measure satisfies", "infinite dimensional gibbs measure satisfies" ], "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0901.1482P" } } }