{ "id": "0901.0947", "version": "v2", "published": "2009-01-07T22:57:33.000Z", "updated": "2010-07-04T12:35:55.000Z", "title": "Orthogonal polynomials on the unit circle, $q$-Gamma weights, and discrete Painlevé equations", "authors": [ "Philippe Biane" ], "comment": "26 pages 2 figures", "categories": [ "math.CA" ], "abstract": "We consider orthogonal polynomials on the unit circle with respect to a weight which is a quotient of $q$-gamma functions. We show that the Verblunsky coefficients of these polynomials satisfy discrete Painlev\\'e equations, in a Lax form, which correspond to an $A_3^{(1)}$ surface in Sakai's classification.", "revisions": [ { "version": "v2", "updated": "2010-07-04T12:35:55.000Z" } ], "analyses": { "subjects": [ "42C05" ], "keywords": [ "orthogonal polynomials", "unit circle", "gamma weights", "polynomials satisfy discrete painleve equations", "verblunsky coefficients" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0901.0947B" } } }