{ "id": "0901.0690", "version": "v3", "published": "2009-01-06T18:42:40.000Z", "updated": "2009-04-27T07:01:58.000Z", "title": "Castelnuovo-Mumford regularity of deficiency modules", "authors": [ "Markus Brodmann", "Maryam Jahangiri", "Cao Huy Linh" ], "comment": "25 pages, the previous version divided in two parts", "categories": [ "math.AC", "math.AG" ], "abstract": "Let $d \\in \\N$ and let $M$ be a finitely generated graded module of dimension $\\leq d$ over a Noetherian homogeneous ring $R$ with local Artinian base ring $R_0$. Let $\\beg(M)$, $\\gendeg(M)$ and $\\reg(M)$ respectively denote the beginning, the generating degree and the Castelnuovo-Mumford regularity of $M$. If $i \\in \\N_0$ and $n \\in Z$, let $d^i_M(n)$ denote the $R_0$-length of the $n$-th graded component of the $i$-th $R_+$-transform module $D^i_{R_+}(M)$ of $M$ and let $K^i(M)$ denote the $i$-th deficiency module of $M$. Our main result says, that $\\reg(K^i(M))$ is bounded in terms of $\\beg(M)$ and the \"diagonal values\" $d^j_M(-j)$ with $j = 0,..., d-1$. As an application of this we get a number of further bounding results for $\\reg(K^i(M))$.", "revisions": [ { "version": "v3", "updated": "2009-04-27T07:01:58.000Z" } ], "analyses": { "subjects": [ "13D45", "13D40" ], "keywords": [ "castelnuovo-mumford regularity", "th deficiency module", "main result says", "th graded component", "transform module" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }