{ "id": "0901.0422", "version": "v1", "published": "2009-01-05T05:24:51.000Z", "updated": "2009-01-05T05:24:51.000Z", "title": "Einstein and conformally flat critical metrics of the volume functional", "authors": [ "Pengzi Miao", "Luen-Fai Tam" ], "comment": "38 pages", "categories": [ "math.DG", "math.AP" ], "abstract": "Let $R$ be a constant. Let $\\mathcal{M}^R_\\gamma$ be the space of smooth metrics $g$ on a given compact manifold $\\Omega^n$ ($n\\ge 3$) with smooth boundary $\\Sigma $ such that $g$ has constant scalar curvature $R$ and $g|_{\\Sigma}$ is a fixed metric $\\gamma$ on $\\Sigma$. Let $V(g)$ be the volume of $g\\in\\mathcal{M}^R_\\gamma$. In this work, we classify all Einstein or conformally flat metrics which are critical points of $V(\\cdot)$ in $\\mathcal{M}^R_\\gamma$.", "revisions": [ { "version": "v1", "updated": "2009-01-05T05:24:51.000Z" } ], "analyses": { "subjects": [ "53C20" ], "keywords": [ "conformally flat critical metrics", "volume functional", "constant scalar curvature", "compact manifold", "smooth boundary" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable" } } }