{ "id": "0901.0300", "version": "v3", "published": "2009-01-03T02:19:33.000Z", "updated": "2010-10-05T14:01:16.000Z", "title": "A finiteness theorem for hyperbolic 3-manifolds", "authors": [ "Ian Biringer Juan Souto" ], "comment": "20 pages, to appear in Journal of the London Mathematical Society", "doi": "10.1112/jlms/jdq106", "categories": [ "math.GT" ], "abstract": "We prove that there are only finitely many closed hyperbolic 3-manifolds with injectivity radius and first eigenvalue of the Laplacian bounded below whose fundamental groups can be generated by a given number of elements. An application to arithmetic manifolds is also given.", "revisions": [ { "version": "v3", "updated": "2010-10-05T14:01:16.000Z" } ], "analyses": { "subjects": [ "57M50" ], "keywords": [ "finiteness theorem", "injectivity radius", "first eigenvalue", "fundamental groups", "arithmetic manifolds" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0901.0300B" } } }