{ "id": "0901.0120", "version": "v3", "published": "2008-12-31T17:11:04.000Z", "updated": "2009-09-08T14:40:44.000Z", "title": "On a theorem of Mestre and Schoof", "authors": [ "John E. Cremona", "Andrew V. Sutherland" ], "comment": "6 pages, to appear in Journal de Th\\'eorie des Nombres de Bordeaux", "journal": "Journal de Th\\'eorie des Nombres de Bordeaux 22 (2010), 353-358", "doi": "10.5802/jtnb.719", "categories": [ "math.NT" ], "abstract": "A well known theorem of Mestre and Schoof implies that the order of an elliptic curve E over a prime field F_q can be uniquely determined by computing the orders of a few points on E and its quadratic twist, provided that q > 229. We extend this result to all finite fields with q > 49, and all prime fields with q > 29.", "revisions": [ { "version": "v3", "updated": "2009-09-08T14:40:44.000Z" } ], "analyses": { "subjects": [ "11G20" ], "keywords": [ "prime field", "finite fields", "elliptic curve", "schoof implies" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0901.0120C" } } }