{ "id": "0812.4977", "version": "v1", "published": "2008-12-29T21:45:10.000Z", "updated": "2008-12-29T21:45:10.000Z", "title": "Decay of mass for nonlinear equation with fractional Laplacian", "authors": [ "Ahmad Fino", "Grzegorz Karch" ], "categories": [ "math.AP" ], "abstract": "The large time behavior of nonnegative solutions to the reaction-diffusion equation $\\partial_t u=-(-\\Delta)^{\\alpha/2}u - u^p,$ $(\\alpha\\in(0,2], p>1)$ posed on $\\mathbb{R}^N$ and supplemented with an integrable initial condition is studied. We show that the anomalous diffusion term determines the large time asymptotics for $p>1+{\\alpha}/{N},$ while nonlinear effects win if $p\\leq1+{\\alpha}/{N}.$", "revisions": [ { "version": "v1", "updated": "2008-12-29T21:45:10.000Z" } ], "analyses": { "subjects": [ "35K55", "35B40", "60H99" ], "keywords": [ "fractional laplacian", "nonlinear equation", "nonlinear effects win", "anomalous diffusion term determines", "large time asymptotics" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0812.4977F" } } }