{ "id": "0812.4093", "version": "v2", "published": "2008-12-22T04:51:59.000Z", "updated": "2008-12-30T14:33:57.000Z", "title": "K-stability of constant scalar curvature polarization", "authors": [ "Toshiki Mabuchi" ], "comment": "Introduction of the version 1 is revised", "categories": [ "math.DG", "math.AG" ], "abstract": "In this paper, we shall show that a polarized algebraic manifold is K-stable if the polarization class admits a Kaehler metric of constant scalar curvature. This generalizes the results of Chen-Tian, Donaldson and Stoppa. (Parts of the arguments are based on a forthcoming paper \"A stronger concept of K-stability.\" )", "revisions": [ { "version": "v2", "updated": "2008-12-30T14:33:57.000Z" } ], "analyses": { "subjects": [ "53C55", "14L24" ], "keywords": [ "constant scalar curvature polarization", "k-stability", "polarization class admits", "kaehler metric", "polarized algebraic manifold" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0812.4093M" } } }