{ "id": "0812.3787", "version": "v4", "published": "2008-12-19T13:50:14.000Z", "updated": "2010-03-11T19:43:36.000Z", "title": "A non-abelian Stickelberger theorem", "authors": [ "David Burns", "Henri Johnston" ], "comment": "further revised; 22 pages. To appear in Compositio Mathematica.", "doi": "10.1112/S0010437X10004859", "categories": [ "math.NT" ], "abstract": "Let L/k be a finite Galois extension of number fields with Galois group G. For every odd prime p satisfying certain mild technical hypotheses, we use values of Artin L-functions to construct an element in the centre of the group ring Z_(p)[G] that annihilates the p-part of the class group of L.", "revisions": [ { "version": "v4", "updated": "2010-03-11T19:43:36.000Z" } ], "analyses": { "subjects": [ "11R29", "11R33", "11R42" ], "keywords": [ "non-abelian stickelberger theorem", "finite galois extension", "class group", "odd prime", "artin l-functions" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0812.3787B" } } }