{ "id": "0812.3398", "version": "v1", "published": "2008-12-17T21:03:45.000Z", "updated": "2008-12-17T21:03:45.000Z", "title": "Global Attractivity of the Equilibrium of a Difference Equation: An Elementary Proof Assisted by Computer Algebra System", "authors": [ "Orlando Merino" ], "comment": "10 pages", "categories": [ "math.DS" ], "abstract": "Let $p$ and $q$ be arbitrary positive numbers. It is shown that if $q < p$, then all solutions to the difference equation \\tag{E} x_{n+1} = \\frac{p+q x_n}{1+x_{n-1}}, \\quad n=0,1,2,..., \\quad x_{-1}>0, x_0>0 converge to the positive equilibrium $\\overline{x} = {1/2}(q-1 + \\sqrt{(q-1)^2 + 4 p})$. \\medskip The above result, taken together with the 1993 result of Koci\\'c and Ladas for equation (E) with $q \\geq p$, gives global attractivity of the positive equilibrium of (E) for all positive values of the parameters, thus completing the proof of a conjecture of Ladas.", "revisions": [ { "version": "v1", "updated": "2008-12-17T21:03:45.000Z" } ], "analyses": { "subjects": [ "39A11" ], "keywords": [ "computer algebra system", "difference equation", "global attractivity", "elementary proof", "positive equilibrium" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0812.3398M" } } }