{ "id": "0812.3385", "version": "v1", "published": "2008-12-17T20:09:08.000Z", "updated": "2008-12-17T20:09:08.000Z", "title": "Global Behavior of Solutions to Two Classes of Second Order Rational Difference Equations", "authors": [ "Sukanya Basu", "Orlando Merino" ], "comment": "23 pages", "categories": [ "math.DS" ], "abstract": "For nonnegative real numbers $\\alpha$, $\\beta$, $\\gamma$, $A$, $B$ and $C$ such that $B+C>0$ and $\\alpha+\\beta+\\gamma >0$, the difference equation \\begin{equation*} x_{n+1}=\\displaystyle\\frac{\\alpha +\\beta x_{n}+\\gamma x_{n-1}}{A+B x_{n}+C x_{n-1}}, \\quad n=0,1,2,... %, \\quad x_{-1},x_{0}\\in [0,\\infty) \\end{equation*} has a unique positive equilibrium. A proof is given here for the following statements: \\medskip \\noindent Theorem 1. {\\it For every choice of positive parameters $\\alpha$, $\\beta$, $\\gamma$, $A$, $B$ and $C$, all solutions to the difference equation \\begin{equation*} x_{n+1}=\\displaystyle\\frac{\\alpha +\\beta x_{n}+\\gamma x_{n-1}}{A+B x_{n}+C x_{n-1}}, \\quad n=0,1,2,..., \\quad x_{-1},x_{0}\\in [0,\\infty) \\end{equation*} converge to the positive equilibrium or to a prime period-two solution.} \\medskip \\noindent Theorem 2. {\\it For every choice of positive parameters $\\alpha$, $\\beta$, $\\gamma$, $A$, $B$ and $C$, all solutions to the difference equation \\begin{equation*} x_{n+1}= \\displaystyle\\frac{\\alpha +\\beta x_{n}+\\gamma x_{n-1}}{B x_{n}+C x_{n-1}}, \\quad n=0,1,2,..., \\quad x_{-1},x_{0}\\in (0,\\infty) \\end{equation*} converge to the positive equilibrium or to a prime period-two solution.}", "revisions": [ { "version": "v1", "updated": "2008-12-17T20:09:08.000Z" } ], "analyses": { "subjects": [ "39A05", "39A11" ], "keywords": [ "second order rational difference equations", "global behavior", "prime period-two solution", "positive equilibrium", "positive parameters" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0812.3385B" } } }