{ "id": "0812.3382", "version": "v1", "published": "2008-12-17T20:04:45.000Z", "updated": "2008-12-17T20:04:45.000Z", "title": "p-Density, exponential sums and Artin-Schreier curves", "authors": [ "Régis Blache" ], "comment": "12 pages", "journal": "J. Number Theory 132, pp 2336-2352, 2012", "categories": [ "math.NT", "math.AG" ], "abstract": "In this paper we define the $p$-density of a finite subset $D\\subset\\ma{N}^r$, and show that it gives a good lower bound for the $p$-adic valuation of exponential sums over finite fields of characteristic $p$. We also give an application: when $r=1$, the $p$-density is the first slope of the generic Newton polygon of the family of Artin-Schreier curves associated to polynomials with their exponents in $D$.", "revisions": [ { "version": "v1", "updated": "2008-12-17T20:04:45.000Z" } ], "analyses": { "keywords": [ "exponential sums", "artin-schreier curves", "generic newton polygon", "adic valuation", "finite subset" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0812.3382B" } } }