{ "id": "0812.2899", "version": "v3", "published": "2008-12-15T20:34:30.000Z", "updated": "2009-01-04T03:19:32.000Z", "title": "Parametric Bing and Krasinkiewicz maps: revisited", "authors": [ "Vesko Valov" ], "comment": "12 pages", "categories": [ "math.GN", "math.GT" ], "abstract": "Let $M$ be a complete metric $ANR$-space such that for any metric compactum $K$ the function space $C(K,M)$ contains a dense set of Bing (resp., Krasinkiewicz) maps. It is shown that $M$ has the following property: If $f\\colon X\\to Y$ is a perfect surjection between metric spaces, then $C(X,M)$ with the source limitation topology contains a dense $G_\\delta$-subset of maps $g$ such that all restrictions $g|f^{-1}(y)$, $y\\in Y$, are Bing (resp., Krasinkiewicz) maps. We apply the above result to establish some mapping theorems for extensional dimension.", "revisions": [ { "version": "v3", "updated": "2009-01-04T03:19:32.000Z" } ], "analyses": { "subjects": [ "54F15", "54F45", "54E40" ], "keywords": [ "krasinkiewicz maps", "parametric bing", "source limitation topology contains", "complete metric", "dense set" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0812.2899V" } } }