{ "id": "0812.2667", "version": "v1", "published": "2008-12-14T18:39:25.000Z", "updated": "2008-12-14T18:39:25.000Z", "title": "Upper Triangular Operator Matrices, SVEP and Browder. Weyl Theorems", "authors": [ "B. P. Duggal" ], "comment": "12 pages", "categories": [ "math.FA" ], "abstract": "A Banach space operator $T\\in B({\\cal X})$ is polaroid if points $\\lambda\\in\\iso\\sigma\\sigma(T)$ are poles of the resolvent of $T$. Let $\\sigma_a(T)$, $\\sigma_w(T)$, $\\sigma_{aw}(T)$, $\\sigma_{SF_+}(T)$ and $\\sigma_{SF_-}(T)$ denote, respectively, the approximate point, the Weyl, the Weyl essential approximate, the upper semi--Fredholm and lower semi--Fredholm spectrum of $T$. For $A$, $B$ and $C\\in B({\\cal X})$, let $M_C$ denote the operator matrix $(A & C 0 & B)$. If $A$ is polaroid on $\\pi_0(M_C)=\\{\\lambda\\in\\iso\\sigma(M_C) 0<\\dim(M_C-\\lambda)^{-1}(0)<\\infty\\}$, $M_0$ satisfies Weyl's theorem, and $A$ and $B$ satisfy either of the hypotheses (i) $A$ has SVEP at points $\\lambda\\in\\sigma_w(M_0)\\setminus\\sigma_{SF_+}(A)$ and $B$ has SVEP at points $\\mu\\in\\sigma_w(M_0)\\setminus\\sigma_{SF_-}(B)$, or, (ii) both $A$ and $A^*$ have SVEP at points $\\lambda\\in\\sigma_w(M_0)\\setminus\\sigma_{SF_+}(A)$, or, (iii) $A^*$ has SVEP at points $\\lambda\\in\\sigma_w(M_0)\\setminus\\sigma_{SF_+}(A)$ and $B^*$ has SVEP at points $\\mu\\in\\sigma_w(M_0)\\setminus\\sigma_{SF_-}(B)$, then $\\sigma(M_C)\\setminus\\sigma_w(M_C)=\\pi_0(M_C)$. Here the hypothesis that $\\lambda\\in\\pi_0(M_C)$ are poles of the resolvent of $A$ can not be replaced by the hypothesis $\\lambda\\in\\pi_0(A)$ are poles of the resolvent of $A$. For an operator $T\\in B(\\X)$, let $\\pi_0^a(T)=\\{\\lambda:\\lambda\\in\\iso\\sigma_a(T), 0<\\dim(T-\\lambda)^{-1}(0)<\\infty\\}$. We prove that if $A^*$ and $B^*$ have SVEP, $A$ is polaroid on $\\pi_0^a(\\M)$ and $B$ is polaroid on $\\pi_0^a(B)$, then $\\sigma_a(\\M)\\setminus\\sigma_{aw}(\\M)=\\pi_0^a(\\M)$.", "revisions": [ { "version": "v1", "updated": "2008-12-14T18:39:25.000Z" } ], "analyses": { "subjects": [ "47B47", "47A10", "47A11" ], "keywords": [ "upper triangular operator matrices", "weyl theorems", "banach space operator", "weyl essential approximate", "satisfies weyls theorem" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0812.2667D" } } }