{ "id": "0812.2552", "version": "v1", "published": "2008-12-13T14:28:40.000Z", "updated": "2008-12-13T14:28:40.000Z", "title": "A Bernoulli linked-twist map in the plane", "authors": [ "James Springham", "Stephen Wiggins" ], "comment": "13 pages, 8 figures, high quality figures on request", "categories": [ "math.DS" ], "abstract": "We prove that a Lebesgue measure-preserving linked-twist map defined in the plane is metrically isomorphic to a Bernoulli shift (and thus strongly mixing). This is the first such result for an explicitly defined linked-twist map on a manifold other than the two-torus. Our work builds on that of Wojtkowski who established an ergodic partition for this example using an invariant cone-field in the tangent space.", "revisions": [ { "version": "v1", "updated": "2008-12-13T14:28:40.000Z" } ], "analyses": { "keywords": [ "bernoulli linked-twist map", "tangent space", "bernoulli shift", "lebesgue measure-preserving linked-twist map", "explicitly defined linked-twist map" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0812.2552S" } } }