{ "id": "0812.2092", "version": "v1", "published": "2008-12-11T07:51:27.000Z", "updated": "2008-12-11T07:51:27.000Z", "title": "A limit approach to group homology", "authors": [ "Ioannis Emmanouil", "Roman Mikhailov" ], "journal": "Journal of Algebra, 319, (2008), 1450-1461", "categories": [ "math.GR", "math.KT" ], "abstract": "In this paper, we consider for any free presentation $G = F/R$ of a group $G$ the coinvariance $H_{0}(G,R_{ab}^{\\otimes n})$ of the $n$-th tensor power of the relation module $R_{ab}$ and show that the homology group $H_{2n}(G,{\\mathbb Z})$ may be identified with the limit of the groups $H_{0}(G,R_{ab}^{\\otimes n})$, where the limit is taken over the category of these presentations of $G$. We also consider the free Lie ring generated by the relation module $R_{ab}$, in order to relate the limit of the groups $\\gamma_{n}R/[\\gamma_{n}R,F]$ to the $n$-torsion subgroup of $H_{2n}(G,{\\mathbb Z})$.", "revisions": [ { "version": "v1", "updated": "2008-12-11T07:51:27.000Z" } ], "analyses": { "keywords": [ "group homology", "limit approach", "relation module", "th tensor power", "free presentation" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0812.2092E" } } }