{ "id": "0812.0982", "version": "v1", "published": "2008-12-04T16:58:12.000Z", "updated": "2008-12-04T16:58:12.000Z", "title": "Regularity results for stable-like operators", "authors": [ "Richard F. Bass" ], "categories": [ "math.AP", "math.PR" ], "abstract": "For $\\alpha\\in [1,2)$ we consider operators of the form $$L f(x)=\\int_{R^d} [f(x+h)-f(x)-1_{(|h|\\leq 1)} \\nabla f(x)\\cdot h] \\frac{A(x,h)}{|h|^{d+\\alpha}}$$ and for $\\alpha\\in (0,1)$ we consider the same operator but where the $\\nabla f$ term is omitted. We prove, under appropriate conditions on $A(x,h)$, that the solution $u$ to $L u=f$ will be in $C^{\\alpha+\\beta}$ if $f\\in C^\\beta$.", "revisions": [ { "version": "v1", "updated": "2008-12-04T16:58:12.000Z" } ], "analyses": { "subjects": [ "45K05", "35B65", "60J75" ], "keywords": [ "regularity results", "stable-like operators", "appropriate conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0812.0982B" } } }