{ "id": "0812.0317", "version": "v1", "published": "2008-12-01T16:08:42.000Z", "updated": "2008-12-01T16:08:42.000Z", "title": "Classifying Rational G-Spectra for Finite G", "authors": [ "David Barnes" ], "comment": "30 pages", "categories": [ "math.AT" ], "abstract": "We give a new proof that for a finite group G, the category of rational G-equivariant spectra is Quillen equivalent to the product of the model categories of chain complexes of modules over the rational group ring of the Weyl group of H in G, as H runs over the conjugacy classes of subgroups of G. Furthermore the Quillen equivalences of our proof are all symmetric monoidal. Thus we can understand categories of algebras or modules over a ring spectrum in terms of the algebraic model.", "revisions": [ { "version": "v1", "updated": "2008-12-01T16:08:42.000Z" } ], "analyses": { "subjects": [ "55N91", "55P42" ], "keywords": [ "classifying rational g-spectra", "rational g-equivariant spectra", "finite group", "quillen equivalent", "understand categories" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0812.0317B" } } }