{ "id": "0811.4647", "version": "v2", "published": "2008-11-28T05:07:47.000Z", "updated": "2009-01-02T22:34:39.000Z", "title": "Liouville type of theorems with weights for the Navier-Stokes equations and the Euler equations", "authors": [ "Dongho Chae" ], "comment": "17 pages", "categories": [ "math.AP" ], "abstract": "We study Liouville type of theorems for the Navier-Stokes and the Euler equations on $\\Bbb R^N$, $N\\geq 2$. Specifically, we prove that if a weak solution $(v,p)$ satisfies $|v|^2 +|p| \\in L^1 (0,T; L^1(\\Bbb R^N, w_1(x)dx))$ and $\\int_{\\Bbb R^N} p(x,t)w_2 (x)dx \\geq0$ for some weight functions $w_1(x)$ and $w_2 (x)$, then the solution is trivial, namely $v=0$ almost everywhere on $\\Bbb R^N \\times (0, T)$. Similar results hold for the MHD Equations on $\\Bbb R^N$, $N\\geq3$.", "revisions": [ { "version": "v2", "updated": "2009-01-02T22:34:39.000Z" } ], "analyses": { "keywords": [ "euler equations", "navier-stokes equations", "similar results hold", "study liouville type", "weak solution" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0811.4647C" } } }