{ "id": "0811.3666", "version": "v1", "published": "2008-11-22T08:11:07.000Z", "updated": "2008-11-22T08:11:07.000Z", "title": "A characteristic subgroup for fusion systems", "authors": [ "Silvia Onofrei", "Radu Stancu" ], "comment": "LaTeX file, 19 pages", "journal": "Journal of Algebra 322 (2009) 1705-1718", "doi": "10.1016/j.jalgebra.2009.05.026", "categories": [ "math.RT", "math.GR" ], "abstract": "As a counterpart for the prime 2 to Glauberman's $ZJ$-theorem, Stellmacher proves that any nontrivial 2-group $S$ has a nontrivial characteristic subgroup $W(S)$ with the following property. For any finite $\\Sigma_4$-free group $G$, with $S$ a Sylow 2-subgroup of $G$ and with $O_2(G)$ self-centralizing, the subgroup $W(S)$ is normal in $G$. We generalize Stellmacher's result to fusion systems. A similar construction of $W(S)$ can be done for odd primes and gives rise to a Glauberman functor.", "revisions": [ { "version": "v1", "updated": "2008-11-22T08:11:07.000Z" } ], "analyses": { "subjects": [ "20D15", "20E25" ], "keywords": [ "fusion systems", "nontrivial characteristic subgroup", "free group", "odd primes", "similar construction" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0811.3666O" } } }